Euler Characteristic of Graphs and Networks
نویسندگان
چکیده
منابع مشابه
On the Dimension and Euler characteristic of random graphs
The inductive dimension dim(G) of a finite undirected graph G is a rational number defined inductively as 1 plus the arithmetic mean of the dimensions of the unit spheres dim(S(x)) at vertices x primed by the requirement that the empty graph has dimension −1. We look at the distribution of the random variable dim on the Erdös-Rényi probability space G(n, p), where each of the n(n− 1)/2 edges ap...
متن کاملThe generating polynomial and Euler characteristic of intersection graphs
Let E” be n-dimensional Euclidean space. A molecular space is a family of unit cubes in E”. Any molecular space can be represented by its intersection graph. Conversely, it is known that any graph G can be represented by molecular space M(G) in E” for some n. Suppose that S, and S, are topologically equivalent surfaces in E” and molecular spaces M, and M, are the two families of unit cubes inte...
متن کاملcommuting and non -commuting graphs of finit groups
فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...
15 صفحه اولThe Euler Characteristic
I will describe a few basic properties of the Euler characteristic and then I use them to prove special case of a cute formula due to Bernstein-Khovanskii-Koushnirenko. 1. Basic properties of the Euler characteristic The Euler characteristic is a function χ which associates to each reasonable topological space X an integer χ(X). For us a reasonable space would be a space which admits a finite s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Physica Polonica A
سال: 2021
ISSN: 1898-794X,0587-4246
DOI: 10.12693/aphyspola.139.323